Abstract

We provide insights into the secretory pathway of arthropod gland systems by comparing the royal jelly-producing hypopharyngeal glands and the venom-producing glands of the honeybee, Apis mellifera. These glands have different functions and different product release characteristics, but both belong to the class 3 types of insect glands, each being composed of two cells, a secretory cell and a microduct-forming cell. The hypopharyngeal secretory cells possess an extremely elongate tubular invagination that is filled with a cuticular structure, the end-apparatus, anchored against the cell membrane by a conspicuous series of actin rings. In contrast, venom glands have no actin rings, but instead have an actin-rich brush border surrounding the comparatively short and narrow end-apparatus. We relate these cytoskeletal differences to the production system and utilisation of secretions; venom is stored in a reservoir whereas royal jelly and enzymes are produced on demand. Fluorescence-based characterisation of the actin cytoskeleton combined with scanning electron microscopy of the end-apparatus allows for detailed characterisation of the point of secretion release in insect class 3 glands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.