Abstract
Existing natural gas pipelines can facilitate low-cost, large-scale hydrogen transportation and storage, but hydrogen may entail safety challenges. These challenges stem from hydrogen’s different properties compared to natural gas, such as higher ignition probability, different flame behavior, and potential for hydrogen embrittlement. Although risk assessments for hydrogen pipelines are increasing, the impact of hydrogen on the risk of third-party excavation damage (TPD), the major cause of pipeline incidents in the U.S., has received little attention. This work presents the SHyTERP model for Safe Hydrogen Transportation and Excavation Risk Prevention for Pipelines. The model incorporates causal models, excavation damage and pipeline failure statistics, and validated physical models of hydrogen and natural gas release and jet flame behavior. Through four case studies, the model compares the TPD risks of hydrogen and natural gas pipelines, offering insights and recommendations for the safe implementation of hydrogen in existing pipelines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.