Abstract

Interspecific interactions depend not only on the population densities of the interacting species, but on their phenotypes as well. Phenotypic variation can be plastic or heritable and both mechanisms can drive phenotypic change at rates comparable to or faster than those of ecological dynamics (e.g. changes in population abundances or spatial distributions). In this study, we compare the effects rapidly induced and rapidly evolving defences have on community dynamics by considering the fast phenotypic change limit using fast-slow systems theory. Our approach allows us to study phenotypically plastic and evolving systems with one overarching theory, thus capturing the effects rapidly induced defences have on ecological dynamics and how those effects differ from the effects of evolving defences. Our results show that rapidly induced defences tend to stabilize community dynamics and that some behaviours observed in rapidly evolving systems cannot be produced by phenotypic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call