Abstract

BackgroundIntramuscular fat (IMF) content and composition have a strong impact on the nutritional and organoleptic properties of porcine meat. The goal of the current work was to compare the patterns of gene expression and the genetic determinism of IMF traits in the porcine gluteus medius (GM) and longissimus dorsi (LD) muscles.ResultsA comparative analysis of the mRNA expression profiles of the pig GM and LD muscles in 16 Duroc pigs with available microarray mRNA expression measurements revealed the existence of 106 differentially expressed probes (fold-change > 1.5 and q-value < 0.05). Amongst the genes displaying the most significant differential expression, several loci belonging to the Hox transcription factor family were either upregulated (HOXA9, HOXA10, HOXB6, HOXB7 and TBX1) or downregulated (ARX) in the GM muscle. Differences in the expression of genes with key roles in carbohydrate and lipid metabolism (e.g. FABP3, ORMDL1 and SLC37A1) were also detected. By performing a GWAS for IMF content and composition traits recorded in the LD and GM muscles of 350 Duroc pigs, we identified the existence of one region on SSC14 (110–114 Mb) displaying significant associations with C18:0, C18:1(n-7), saturated and unsaturated fatty acid contents in both GM and LD muscles. Moreover, we detected several genome-wide significant associations that were not consistently found in both muscles. Further studies should be performed to confirm whether these associations are muscle-specific. Finally, the performance of an eQTL scan for 74 genes, located within GM QTL regions and with available microarray measurements of gene expression, made possible to identify 14 cis-eQTL regulating the expression of 14 loci, and six of them were confirmed by RNA-Seq.ConclusionsWe have detected significant differences in the mRNA expression patterns of the porcine LD and GM muscles, evidencing that the transcriptomic profile of the skeletal muscle tissue is affected by anatomical, metabolic and functional factors. A highly significant association with IMF composition on SSC14 was replicated in both muscles, highlighting the existence of a common genetic determinism, but we also observed the existence of a few associations whose magnitude and significance varied between LD and GM muscles.

Highlights

  • Intramuscular fat (IMF) content and composition have a strong impact on the nutritional and organoleptic properties of porcine meat

  • A highly significant association with IMF composition on SSC14 was replicated in both muscles, highlighting the existence of a common genetic determinism, but we observed the existence of a few associations whose magnitude and significance varied between longissimus dorsi (LD) and gluteus medius (GM) muscles

  • Amongst the genes displaying the most significant differential expression, several loci belonging to the Hox transcription factor family were either upregulated (HOXA9, HOXA10, HOXB6, HOXB7 and TBX1) or downregulated (ARX) in the GM muscle

Read more

Summary

Introduction

Intramuscular fat (IMF) content and composition have a strong impact on the nutritional and organoleptic properties of porcine meat. Intramuscular fat (IMF) content and fatty acids (FA) composition have important effects on the oxidative stability, tenderness and juiciness of pig meat [1] These phenotypes are moderately heritable and, in consequence, they can be improved through artificial selection [2]. IMF content and composition traits are not routinely recorded by the pig breeding industry despite their strong impact on the manufacturing of cured products because they are difficult and expensive to measure. All these studies have investigated the genomic architecture of IMF traits in a single muscle, so we do not know yet whether the genetic determinism of IMF content and composition is shared across muscles. Hundreds of eQTL associated with muscle gene expression phenotypes have been identified, and several of them have been shown to co-localize with QTL for traits of economic interest [8, 13,14,15,16,17,18,19,20]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call