Abstract
This chapter analyzes two pixel-based classification approaches to support the analysis of land cover transformations based on multitemporal LANDSAT sensor data covering a time space of about 24 years. The research activity presented in this paper was carried out using Lama San Giorgio (Bari, Italy) catchment area as a study case, being this area prone to flooding as proved by its geological and hydrological characteristics and by the significant number of floods occurred in the past. Land cover classes were defined in accordance with on the CN method with the aim of characterizing land use based on attitude to generate runoff. Two different classifiers, i.e. Maximum Likelihood Classifier (MLC) and Java Neural Network Simulator (JavaNNS) models, were compared. The Artificial Neural Networks (ANN) approach was found to be the most reliable and efficient when lacking ground reference data and a priori knowledge on input data distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.