Abstract

Titanium alloy T-joints were produced using two different friction stir welding (FSW) sequences, and the local-global deformation mechanisms until fracture were compared. Due to their differing FSW sequence characteristics, the optimal parameter ranges for the two T-joints are different. The stir zone (SZ) of the single-weld T-joint consists of lamellar α grains, while fine equiaxed α grains develop in the double-weld T-joint due to the selection of low heat input. Due to the different local microstructure zones in the joint, deformation inhomogeneity of the T-joint during tensile testing is observed. Independent of the welding sequence and for optimal process conditions, both T-joint configuration show nearly the same maximum tensile strength as the base material (BM), however at a relatively low fracture strain, below 20% of the BM. The local strain hardening rate in different zones of the T-joint was investigated. The strain hardening ability of SZ with fine grains is significantly higher than elsewhere, because the grain size contributes greatly to strain hardening behavior at low strain levels. The single-weld T-joint experienced a symmetric local strain distribution between advancing and retreating side. For the double-weld T-joint, there are significant differences between the first and the second weld area. The fracture morphologies of both T-joints are typical ductile, where the toughness of the single-weld joint is higher than that of the double-weld joint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.