Abstract

Rigorous physical and mathematical analysis has been intensively developed to obtain the gravity disturbance vector from the inertial navigation system and the global positioning system. However, the combination of the observation noise and the systematic INS errors make it very challenging to accurately and efficiently describe the dynamics of the system with rigorous equations. Thus, the accuracy of the gravity disturbance estimates, especially in the horizontal components, is limited by the insufficient error models. To overcome the difficulty of directly modeling the systematic errors with exact mathematical equations, a Monte Carlo based artificial neural network is successfully applied in the moving base gravimetric system. The computation results show significant improvement in the precision of all components of the gravity disturbance estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.