Abstract

The present work compares the interaction of the antibiotic levofloxacin (LVX) with zwitterionic and anionic liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (DPPG), respectively. By using differential scanning calorimetry (DSC), and with spin labels incorporated into liposomes at two different depths of the bilayers, we investigated the changes induced on the membrane by increasing concentrations of LVX. Further information was obtained using intrinsic LVX fluorescence. Under the conditions used here, all techniques evinced that LVX has little affinity for DPPC zwitterionic membrane. Opposite to that, LVX exhibits a considerable affinity for anionic bilayers, with membrane partition constants Kp = (3.3 ± 0.5) × 102 and (4.5 ± 0.3) × 102, for gel and fluid DPPG membranes, respectively. On binding to DPPG, LVX seems to give rise to the coexistence of LVX -rich and -poor domains on DPPG membranes, as detected by DSC. At the highest LVX concentration used (20 mol%), DSC trace shows an increase in the cooperativity of DPPG gel-fluid transition, also detected by spin labels as an increase in the bilayer packing. Moreover, LVX does not induce pore formation in either DPPG or POPG vesicles. Considering the possible relevance of LVX-membrane interaction for the biological and toxicological action of the antibiotic, the findings discussed here certainly contribute to a better understanding of its action, and the planning of new drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.