Abstract

Synthetic jets besides being used in heat transfer, have also been used to control turbulence and flow separation. In the previous decade, research on the applications of a synthetic jet has indicated that by using these types of jets, flow separation can be reduced or even stopped altogether. In addition, these jets have been utilized in unmanned aerial vehicles (UAVs) (to control separation on airfoils) and flight control. In this study, the jet is located perpendicular to the flat plane with fixed heat flux and the effect of some geometric parameters including the ratio of the distance between the jet and the impact plane to the nozzle width, the ratio of the impact plane length to the jet nozzle width, the ratio of synthetic jet width to width of the nozzle, the ratio of the hole height to the nozzle width, the angle of the impact plate as well as the diaphragm characteristics such as amplitude and frequency of the jet diaphragm in heat transfer were evaluated numerically by using OpenFOAM open-source software. The findings indicate that synthetic jets have very weak efficiency for cooling vertical panels. However, they are extremely effective on angled plates. Synthetic jets have more influence on angled planes than horizontal planes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call