Abstract

Fecal microbiota transplantation (FMT) is an emerging technique for modulating the pig microbiota, however, donor variability is one of the major reasons for inconsistent outcomes across studies. Cultured microbial communities may address some limitations of FMT; however, no study has tested cultured microbial communities as inocula in pigs. This pilot study compared the effects of microbiota transplants derived from sow feces to cultured mixed microbial community (MMC) following weaning. Control, FMT4X, and MMC4X were applied four times, while treatment FMT1X was administered once (n = 12/group). On postnatal day 48, microbial composition was modestly altered in pigs receiving FMT in comparison with Control (Adonis, P = .003), mainly attributed to reduced inter-animal variations in pigs receiving FMT4X (Betadispersion, P = .018). Pigs receiving FMT or MMC had consistently enriched ASVs assigned to genera Dialister and Alloprevotella. Microbial transplantation increased propionate production in the cecum. MMC4X piglets showed a trend of higher acetate and isoleucine compared to Control. A consistent enrichment of metabolites from amino acid metabolism in pigs that received microbial transplantation coincided with enhanced aminoacyl-tRNA biosynthesis pathway. No differences were observed among treatment groups for body weight or cytokine/chemokine profiles. Overall, FMT and MMC exerted similar effects on gut microbiota composition and metabolite production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.