Abstract

Inverse problems are ubiquitous in the Earth Sciences. Many such problems are ill-posed in the sense that multiple solutions can be found that match the data to be inverted. To impose restrictions on these solutions, a prior distribution of the model parameters is required. In a spatial context this prior model can be as simple as a Multi-Gaussian law with prior covariance matrix, or could come in the form of a complex training image describing the prior statistics of the model parameters. In this paper, two methods for generating inverse solutions constrained to such prior model are compared. The gradual deformation method treats the problem of finding inverse solution as an optimization problem. Using a perturbation mechanism, the gradual deformation method searches (optimizes) in the prior model space for those solutions that match the data to be inverted. The perturbation mechanism guarantees that the prior model statistics are honored. However, it is shown with a simple example that this perturbation method does not necessarily draw accurately samples from a given posterior distribution when the inverse problem is framed within a Bayesian context. On the other hand, the probability perturbation method approaches the inverse problem as a data integration problem. This method explicitly deals with the problem of combining prior probabilities with pre-posterior probabilities derived from the data. It is shown that the sampling properties of the probability perturbation method approach the accuracy of well-known Markov chain Monte Carlo samplers such as the rejection sampler. The paper uses simple examples to illustrate the clear differences between these two methods

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call