Abstract

The passive implantable atrial defibrillator (PIAD) (with no battery or discharging capacitor and powered transcutaneously by radio-frequency energy) delivering a novel monophasic low-tilt waveform is more efficacious than the standard monophasic waveform at atrial defibrillation. Standard biphasic (STB) waveforms, however, are more efficacious and safer than monophasic waveforms. This study compared the efficacy and safety of the PIAD waveform with biphasic waveforms. Sustained atrial fibrillation (AF) was induced by rapid atrial pacing. Cardioversion was attempted via 2 atrial defibrillation leads. The efficacy of the PIAD was compared with 3 biphasic waveforms (standard, single rounded, and double rounded) at varying voltage settings in 10 pigs. After a synchronized shock, hemodynamic changes between the PIAD, standard biphasic, and monophasic waveforms were compared at 1.5 and 3.0 J in 12 pigs. Myocardial injury (biochemical and histological) after ten 5-J PIAD shocks was compared with a no-shock group in 14 pigs. The PIAD 100-V setting was significantly more efficacious than the STB (100/-50 V: 100% [1.88+/-0.02 J] versus 90% [0.89+/-0.0 J]; P=0.025). No arrhythmic, hemodynamic, or myocardial injury was observed with the PIAD waveform. Defibrillation with the PIAD is more efficacious than with the STB waveform and appears safe. This device could provide a more effective option for cardioversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call