Abstract
Endocrine disrupting chemicals (EDCs) target aspects of hormone activity. Tightly coordinated crosstalk between two somatic cells of the ovary, granulosa and theca cells, governs steroid hormone production and plays a critical role in reproduction. It is thus pertinent to understand the impact of EDCs on granulosa and theca cells. Bisphenol A (BPA), a well-known EDC, is widely used in the manufacturing of consumer products with humans routinely exposed. Strong evidence of the adverse effects of BPA on the female reproductive system has emerged and as a result, manufacturers have begun replacing BPA with other bisphenols, such as BPC and BPF. The safety of these analogs is currently unclear and should be investigated independently. Although much is known about the impact of BPA on granulosa cells, similar study of theca cells has been neglected. Further, there is a lack of studies on the impact of BPC and BPF on the female reproductive system. To fill these gaps, the present study compared the effect of BPA, BPC, and BPF on the viability and steroid production of theca cells from bovine, a clinically relevant model for human reproduction. We show that BPC is more detrimental to theca cell viability and progesterone production compared to BPA. Surprisingly, we also found that BPF induces an increase in progesterone production compared to a decrease with BPA and BPC. To determine safety for the reproductive system, we conclude that a major shift away from BPA to bisphenol analogs should be investigated more thoroughly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.