Abstract

BackgroundLocomotor adaptation has been suggested as a way to improve gait symmetry in individuals post-stroke. Most perturbation methods utilize costly, specialized equipment. The use of a unilateral leg weight may provide a low cost, clinically translatable alternative. Furthermore, previous studies have suggested that adaptation context may affect movement outcomes. The purpose of this study was to assess the ability of a unilaterally applied ankle weight to drive locomotor adaptation and determine the effect of context (treadmill versus overground) in young, non-disabled participants. MethodsEighteen young non-disabled adults were randomly assigned to receive 10min of walking on a treadmill with a weight (TG), overground with a weight (OG) or as a control on a treadmill/overground without a weight (CG). Outcomes measured before, during and after adaptation were: step length symmetry, single limb support symmetry and gait speed. ResultsAfter adding the weight, single limb support immediately became asymmetrical for all participants without changes in step length symmetry. After walking for 10min, TG step length became asymmetrical. After weight removal, both TG and OG had increased step length asymmetry. TG decreased single limb support asymmetry while OG did not. After walking overground without the weight, walking parameters eventually returned to baseline in both weighted groups. The control group showed no changes. ConclusionA unilaterally applied ankle weight appears able to cause gait adaptation in young, non-disabled participants. However different adaptive changes in the gait pattern are made by the nervous system when the perturbation is applied in different contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call