Abstract
There is great practical and scholarly interest in the identification of pigments in works of art. This paper compares the effectiveness of the widely used Raman Spectroscopy (RS), with hyperspectral imaging (HSI), a reflectance imaging technique, to evaluate the reliability of HSI for the identification of pigments in historic works of art and to ascertain if there are any benefits from using HSI or a combination of both. We undertook a case study based on six Armenian illuminated manuscripts (eleventh–eighteenth centuries CE) in the Bodleian Library, University of Oxford. RS, and HSI (380–1000 nm) were both used to analyse the same 10 folios, with the data then used to test the accuracy and efficiency of HSI against the known results from RS using reflectance spectra reference databases compiled by us for the project. HSI over the wavelength range 380–1000 nm agreed with RS at best 93% of the time, and performance was enhanced using the SFF algorithm and by using a database with many similarities to the articles under analysis. HSI is significantly quicker at scanning large areas, and can be used alongside RS to identify and map large areas of pigment more efficiently than RS alone. HSI therefore has potential for improving the speed of pigment identification across manuscript folios and artwork but must be used in conjunction with a technique such as RS.
Highlights
Pigment analysis Technical investigations of works of art are of great value to conservators and researchers
Armenian manuscripts Hyperspectral imaging was used here to identify the pigments in a set of Armenian illuminated manuscripts from the Bodleian Library, University of Oxford, and the identifications made were compared to data obtained from Raman spectroscopy analysis of the same texts
Not all pigments provide strong Raman scattering signals and so this study focused on those which gave good signals using the Raman spectroscopy equipment available, in order for the hyperspectral imaging (HSI) setup to be compared to a technique known to be accurate
Summary
Pigment analysis Technical investigations of works of art are of great value to conservators and researchers. Scientific techniques have been applied to pigment identification as part of conservation since the late twentieth century [1, 2] aiding: characterisation of the palette of an artist or workshop [3, 4]; art historical understanding of the artist [5]; identification of restorations or interventions [3, 6]; monitoring degradation [7]; detailing the conservation state of an item [3]; revealing preparatory sketches [6], underdrawings [3], or palimpsests [8]; segmentation of a painting into regions for differential processing such as colour retouching [9] Such knowledge is of value to researchers and can aid in effective conservation strategies and restoration [7], and answer questions of provenance [3, 4, 6, 7, 10,11,12]. Mosca et al [16]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.