Abstract

We investigate the interplay of electronic correlations and spin-orbit coupling (SOC) for a one-band and a two-band honeycomb lattice model. The main difference between the two models concerning SOC is that in the one-band case the SOC is a purely non-local term in the basis of the $p_z$ orbitals, whereas in the two-band case with $p_x$ and $p_y$ as basis functions it is purely local. In order to grasp the correlation effects on non-local spin-orbit coupling, we apply the TRILEX approach that allows to calculate non-local contributions to the self-energy approximatively. For the two-band case we apply dynamical mean-field theory. In agreement with previous studies, we find that for all parameter values in our study, the effect of correlations on the spin-orbit coupling strength is that the bare effective SOC parameter is increased. However, this increase is much weaker in the non-local than in the local SOC case. Concerning the TRILEX method, we introduce the necessary formulas for calculations with broken SU(2) symmetry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call