Abstract

The electron firehose instabilities are among the most studied kinetic instabilities, especially in the context of space plasmas, whose dynamics is mainly controlled by collisionless wave-particle interactions. This paper undertakes a comparative analysis of the aperiodic electron firehose instabilities excited either by the anisotropic temperature or by the electron counter-beaming populations. Two symmetric counter-beams provide an effective kinetic anisotropy similar to the temperature anisotropy of a single (non-drifting) population, with temperature along the magnetic field direction larger than that in perpendicular direction. Therefore, the counter-beaming plasma is susceptible to firehose-like instabilities (FIs), parallel and oblique branches. Here we focus on the oblique beaming FI, which is also aperiodic when the free energy is provided by symmetric counter-beams. Our results show that, for relative small drifts or beaming speeds ($U$), not exceeding the thermal speed ($\alpha$), the aperiodic FIs exist in the same interval of wave-numbers and the same range of oblique angles (with respect to the magnetic field direction), but the growth rates of counter-beaming FI (CBFI) are always higher than those of temperature anisotropy FI (TAFI). For $U/\alpha > 1$, however, another electrostatic two-stream instability (ETSI) is also predicted, which may have growth rates higher than those of CBFI, and may dominate in that case the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.