Abstract
Abstract Two methods for assimilating radar reflectivity into deterministic convection-allowing forecasts were compared: an operationally used, computationally less expensive cloud analysis (CA) scheme and a relatively more expensive, but rigorous, ensemble Kalman filter–variational hybrid method (EnVar). These methods were implemented in the Nonhydrostatic Multiscale Model on the B-grid and were tested on 10 cases featuring high-impact deep convective storms and heavy precipitation. A variety of traditional, neighborhood-based, and features-based verification metrics support that the EnVar produced superior free forecasts compared to the CA procedure, with statistically significant differences extending up to 9 h into the forecast. Despite being inferior, the CA scheme was able to provide benefit compared to not assimilating radar reflectivity at all, but limited to the first few forecast hours. While the EnVar is able to partially suppress spurious convection by assimilating 0-dBZ reflectivity observations directly, the CA is not designed to reduce or remove hydrometeors. As a result, the CA struggles more with suppression of spurious convection in the first-guess field, which resulted in high-frequency biases and poor forecast evolution, as illustrated in a few case studies. Additionally, while the EnVar uses flow-dependent ensemble covariances to update hydrometers, thermodynamic, and dynamic variables simultaneously when the reflectivity is assimilated, the CA relies on a radar reflectivity-derived latent heating rate that is applied during a separate digital filter initialization (DFI) procedure to introduce deep convective storms into the model, and the results of CA are shown to be sensitive to the window length used in the DFI.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.