Abstract

Using a predictive coarse-grained protein force field, we compute and compare the free energy landscapes and relative stabilities of amyloid-β protein (1-42) and amyloid-β protein (1-40) in their monomeric and oligomeric forms up to the octamer. At the same concentration, the aggregation free energy profile of Aβ42 is more downhill, with a computed solubility that is about 10 times smaller than that of Aβ40. At a concentration of 40 μM, the clear free energy barrier between the pre-fibrillar tetramer form and the fibrillar pentamer in the Aβ40 aggregation landscape disappears for Aβ42, suggesting that the Aβ42 tetramer has a more diverse structural range. To further compare the landscapes, we develop a cluster analysis based on the structural similarity between configurations and use it to construct an oligomerization map that captures the paths of easy interconversion between different but structurally similar states of oligomers for both species. A taxonomy of the oligomer species based on β-sheet stacking topologies is proposed. The comparison of the two oligomerization maps highlights several key differences in the landscapes that can be attributed to the two additional C-terminal residues that Aβ40 lacks. In general, the two terminal residues strongly stabilize the oligomeric structures for Aβ42 relative to Aβ40, and greatly facilitate the conversion from pre-fibrillar trimers to fibrillar tetramers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.