Abstract

HT61 and chlorhexidine (CHX) are both putative membrane-active antimicrobials, which non-specifically target the anionic lipids abundant in bacterial membranes. In model systems, the ability of these antimicrobials to partition into lipid monolayers and increase the permeability of lipid bilayers is dependent upon the presence and proportion of anionic lipids such as phosphatidylglycerol. Despite their apparent similarity in membrane affinity, we have found that HT61 and CHX differ in the extent to which they affect membrane integrity. HT61 was found to be capable of severely disrupting the lipid bilayer, resulting in lysis of Staphylococcus aureus membranes and the release of ATP from protoplasts. CHX, by contrast, does not disrupt the lipid bilayer to a sufficiently large degree to result in lysis of the membrane or release of ATP from S. aureus protoplasts. This suggests that although antimicrobials that interact with the membrane often have a common target, the action they have on the membrane may differ widely and may not be the primary mode of action of the antimicrobial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.