Abstract

Independently controlled irrigation plots were designed to test two container nursery irrigation regimes on oakleaf hydrangea (Hydrangea quercifolia ‘Alice’) in both nursery and controlled greenhouse environments. The experiments were conducted in both 3.8 and 11.4L containers. Plants were automatically irrigated by one of two soil moisture sensor-based regimes: (1) a daily water use (DWU) system that delivered the exact amount of water that had been lost in the previous 24h and (2) an on-demand (OD) irrigation system based on a specific substrate moisture content derived from the relationship between substrate moisture and photosynthetic rate. In this system, irrigation was applied when the substrate moisture level fell below 33% container capacity, which corresponded to 90% maximum predicted photosynthetic rate. Both treatments delivered the volume of water required to return the containers to container capacity by overhead irrigation, but the DWU system was static, irrigating once per day, whereas OD was dynamic and irrigated whenever the substrate moisture reached the 33% threshold level. Gas exchange was measured at the driest point prior to the next irrigation event. Periodical growth index, water use, and final dry weight were recorded. OD used less water than DWU outdoors, reduced leaching fraction among greenhouse experiments, and had either no or a positive impact on biomass in all but one trial. For 3.8L plants, photosynthesis and stomatal conductance were consistently greater when irrigated by the OD program. Both treatments used significantly less water than the industry standard of 2.5cm per day. This research demonstrated that both DWU and OD are a dramatic improvement over conventional irrigation scheduling and could be adopted as conservative irrigation systems for nursery production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.