Abstract

The phenomenology of population extinction is one of the central themes in population biology which it is an inherently stochastic event. In the present investigation, we study this problem for three different stochastic models built from a single Lotka–Volterra deterministic model. More concretely, we study their mean-extinction time which satisfies the backward Kolmogorov differential equation, a linear second-order partial differential equation with variable coefficients; hence, we can only compute numerical approximations. We suggest a finite element method using FreeFem++. Our analysis and numerical results allow us to conclude that there are important differences between the three models. These differences enable us to choose the most “natural way” to turn a the deterministic model into a stochastic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.