Abstract

BackgroundXerosis cutis of the feet is one of the most common skin conditions among type 2 diabetics. Whether skin dryness among diabetic patients is different from ‘general’ skin dryness is unclear. The overall aim was to compare the structure, function and molecular markers of dry and cracked foot skin between diabetics and non-diabetics. MethodsThe foot skin of 40 diabetics and 20 non-diabetics was evaluated. A clinical assessment of skin dryness was performed and transepidermal water loss, stratum corneum hydration, skin surface pH, epidermal thickness, skin roughness, elasticity and structural stiffness were measured. Ceramides, natural moisturizing factors, histamines, proteins and molecular markers of oxidative stress were analyzed based on a non-invasive sampling method for collection of surface biomarkers. ResultsThe mean number of superficial fissures in the diabetic group was nearly three times higher than in the non-diabetic group (11.0 (SD 6.2) vs. 3.9 (SD 4.2)). The skin stiffness was higher in the diabetic group and the values of almost all molecular markers showed considerably higher values compared to non-diabetics. Malondialdehyde and glutathione were lower in the diabetic sample. ConclusionsThe high number of superficial fissures may be based on an increased stiffness of dry diabetic foot skin combined with different concentrations of molecular markers in the stratum corneum compared to dry foot skin of non-diabetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.