Abstract
In this article we try different algorithms, namely Nested Monte Carlo Search and Greedy Best First Search, on AstraZeneca's open source retrosynthetic tool : AiZynthFinder. We compare these algorithms to AiZynthFinder's base Monte Carlo Tree Search on a benchmark selected from the PubChem database and by Bayer's chemists. We show that both Nested Monte Carlo Search and Greedy Best First Search outperform AstraZeneca's Monte Carlo Tree Search, with a slight advantage for Nested Monte Carlo Search while experimenting on a playout heuristic. We also show how the search algorithms are bounded by the quality of the policy network, in order to improve our results the next step is to improve the policy network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.