Abstract

AbstractMonsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteorological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data are computed using dedicated techniques that come down to an estimation of the sampling errors associated to these measurements. The results show that the new generation of combined infrared–microwave (IR–MW) satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.