Abstract

Scenario-based risk assessment for rockfalls, requires assumptions for different scenarios of magnitude (volume). The magnitude of such instabilities is related to the properties of the jointed rock mass, with the characteristics of the existing unfavourably dipping joint sets playing a major role. The critical factors for the determination of the maximum credible rockfall volume in a study site, the Forat Negre in Andorra, are investigated. The results from two previous analyses for the rockfall size distribution at this site are discussed. The first analysis provides the observed size distribution of the rockfall scars, and it is an empirical evidence of past rockfalls. The second one, calculates the kinematically detachable rock masses, indicating hypothetical rockfalls that might occur in the future. The later gives a maximum rockfall volume, which is one order of magnitude higher, because the persistence of the basal planes is overestimated. The tension cracks and lateral planes interrupt systematically the basal planes, exerting a control over their persistence, and restricting the formation of extensive planes and large rockfall failures. Nonetheless, the formation of basal planes across more than one spacings of tension cracks is possible and small step-path failures have been observed too. Concluding, the key factor for the determination of the maximum credible volume at the study-site is the maximum realistic length of the basal planes, penetrating into the rock mass, their spacing, and, if applied, the contribution of the rock bridges to the overall rock mass resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call