Abstract
Extinction risk of natural populations of animals and plants is enhanced by many different processes, including habitat size reduction and toxic chemical exposure. We develop a method to evaluate different risk factors in terms of the decrease in the mean extinction time. We choose a population model with logistic growth, environmental and demographic stochasticities with three parameters (intrinsic growth rate r, carrying capacity K, and environmental noiseσ2e ). The reduction in the habitat size decreases carrying capacity K only, whilst toxic chemical exposure decreases survivorship (or fertility) and in effect reduces both r and K. We derived a formula for the reduction in habitat size that decrease the mean extinction time by the same magnitude as a given level of toxic chemical exposure. In a large population (large K) or in a slowly growing population (small r), a small decrease in survivorship can cause the extinction risk increase corresponding to a significant reduction in the habitat size. This conclusion depends also on the nonlinearity of dose–effect relationship. To illustrate the method, we analyse a freshwater fish, Japanese crucian carp (Carassius auratus subsp.) in Lake Biwa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.