Abstract
We show that in the regime of ground-state cooling, simple expressions can be derived for the performance of resolved-sideband cooling --- an example of coherent feedback control --- and optimal linear measurement-based feedback cooling for a harmonic oscillator. These results are valid to leading order in the small parameters that define this regime. They provide insight into the origins of the limitations of coherent and measurement-based feedback for linear systems, and the relationship between them. These limitations are not fundamental bounds imposed by quantum mechanics, but are due to the fact that both cooling methods are restricted to use only a linear interaction with the resonator. We compare the performance of the two methods on an equal footing --- that is, for the same interaction strength --- and confirm that coherent feedback is able to make much better use of the linear interaction than measurement-based feedback. We find that this performance gap is caused not by the back-action noise of the measurement but by the projection noise. We also obtain simple expressions for the maximal cooling that can be obtained by both methods in this regime, optimized over the interaction strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.