Abstract
BackgroundFor most computer-aided diagnosis (CAD) problems involving prostate cancer detection via medical imaging data, the choice of classifier has been largely ad hoc, or been motivated by classifier comparison studies that have involved large synthetic datasets. More significantly, it is currently unknown how classifier choices and trends generalize across multiple institutions, due to heterogeneous acquisition and intensity characteristics (especially when considering MR imaging data). In this work, we empirically evaluate and compare a number of different classifiers and classifier ensembles in a multi-site setting, for voxel-wise detection of prostate cancer (PCa) using radiomic texture features derived from high-resolution in vivo T2-weighted (T2w) MRI.MethodsTwelve different supervised classifier schemes: Quadratic Discriminant Analysis (QDA), Support Vector Machines (SVMs), naïve Bayes, Decision Trees (DTs), and their ensemble variants (bagging, boosting), were compared in terms of classification accuracy as well as execution time. Our study utilized 85 prostate cancer T2w MRI datasets acquired from across 3 different institutions (1 for discovery, 2 for independent validation), from patients who later underwent radical prostatectomy. Surrogate ground truth for disease extent on MRI was established by expert annotation of pre-operative MRI through spatial correlation with corresponding ex vivo whole-mount histology sections. Classifier accuracy in detecting PCa extent on MRI on a per-voxel basis was evaluated via area under the ROC curve.ResultsThe boosted DT classifier yielded the highest cross-validated AUC (= 0.744) for detecting PCa in the discovery cohort. However, in independent validation, the boosted QDA classifier was identified as the most accurate and robust for voxel-wise detection of PCa extent (AUCs of 0.735, 0.683, 0.768 across the 3 sites). The next most accurate and robust classifier was the single QDA classifier, which also enjoyed the advantage of significantly lower computation times compared to any of the other methods.ConclusionsOur results therefore suggest that simpler classifiers (such as QDA and its ensemble variants) may be more robust, accurate, and efficient for prostate cancer CAD problems, especially in the context of multi-site validation.
Highlights
For most computer-aided diagnosis (CAD) problems involving prostate cancer detection via medical imaging data, the choice of classifier has been largely ad hoc, or been motivated by classifier comparison studies that have involved large synthetic datasets
In this work, we empirically compared and evaluated 12 different radiomic classifier ensembles derived from 4 classifier families (QDA, Bayesian learners, Decision Trees, and Support Vector Machines), in terms of accuracy and computation time, for voxel-wise detection of prostate cancer in 85 high resolution T2w Magnetic resonance imaging (MRI) patient datasets curated from across 3 different sites
A secondary motivation of this study was to investigate whether classifier trends on data curated from a single site generalize to data acquired from different sites and scanners
Summary
For most computer-aided diagnosis (CAD) problems involving prostate cancer detection via medical imaging data, the choice of classifier has been largely ad hoc, or been motivated by classifier comparison studies that have involved large synthetic datasets. In comprehensive comparisons of 12 different classifier methods on large databases of lung cancers as well as head & neck cancers when using radiomic features (including independent training and validation cohorts), it was reported that the random forest classifier yielded the best predictive performance in both problems [20, 21]. Both these studies acknowledged that the choice of classifier method had the most dominant effect on predictive performance (i.e. it was a larger source of performance variability as compared to feature selection method or size of cohort)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.