Abstract
Urban water demand forecasting is essential for water supply network optimization and management. In this case study, we comparatively investigate different state-of-the-art predictive models on short- (1 day-ahead) and long-term (7 day-ahead) urban water demand (UWD) forecasting for the city of Milan, Italy. The contribution of this paper is two-fold. First, we compare the forecasting performance of different time series and machine learning models on daily UWD. The tested models include Autoregressive Integrated Moving Average (ARIMA) models, Artificial Neural Networks (ANN), Support Vector Regression (SVR), Light Gradient Boosting Machine (LightGBM), and Long Short-Term Memory (LSTM) networks. Second, we investigate whether coupling a Wavelet Data-Driven Forecasting Framework (WDDFF) with these models further improves predictive capacity. Results show that, in general, WDDFF can improve model predictive performance. LSTM coupled wavelet decomposition technique can achieve high levels of accuracy with R2 larger than 0.9 for both short- and long-term UWD forecasts. LightGBM can efficiently reduce the number of predictors and show the potential to forecast and select important features in the hydrology and water resources field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.