Abstract

The historical application/usage and management of chemicals in Hong Kong have been distinctively different from mainland China. In the present study, polybrominated diphenyl ethers (PBDEs) were measured in year-round atmospheric particle samples collected from urban Hong Kong and Guangzhou for comparison. The concentrations of BDE-209 and Sigma9PBDEs (defined as the sum of BDE-28, -47, -66, -100, -99, -154, -153, -138 and -183) in Guangzhou ranged from 758 to 21,900 pg m(-3) and from 31.8 to 3320 pg m(-3), respectively, and in Hong Kong ranged from 8.5 to 895 pg m(-3) and from 1.0 to 386 pg m(-3), respectively. Elevated concentrations of PBDEs were observed in Guangzhou, showing significant atmospheric PBDE pollution. BDE-209, -47, and -99 were the dominant congeners in all the samples, suggesting that the widely used commercial penta- and deca-BDE products were the original sources. Distinct seasonal patterns were observed in the PBDE concentrations of aerosols in Hong Kong, higher during the winter monsoon period, and lower during summertime. The less distinct seasonal variations of PBDE concentrations in the aerosols of Guangzhou suggested the dominance of local pollution sources around the city. Significant correlations were found between BDE-209 and organic carbon (OC) or elemental carbon (EC) in the two cities, suggesting that combustion may be an important pathway introducing BDE-209 to the atmosphere. The lower BDE-209 concentrations along with higher OC/EC ratios implied that a quick loss of BDE-209 may occur during the aerosol aging processes. Back trajectory analysis showed that the high PBDE concentrations observed in Hong Kong may be related to the outflows from the inland area of the Pearl River Delta (PRD) by prevailing the northeast or northwest wind in winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.