Abstract

The paper considers joint maximum likelihood (ML) and semiparametric (SP) estimation of copula parameters in a bivariate t-copula. Analytical expressions for the asymptotic covariance matrix involving integrals over special functions are derived, which can be evaluated numerically. These direct evaluations of the Fisher information matrix are compared to Hessian evaluations based on numerical differentiation in a simulation study showing a satisfactory performance of the computationally less demanding Hessian evaluations. Individual asymptotic confidence intervals for the t-copula parameters and the corresponding tail dependence coefficient are derived. For two financial datasets these confidence intervals are calculated using both direct evaluation of the Fisher information and numerical evaluation of the Hessian matrix. These confidence intervals are compared to parametric and nonparametric BCA bootstrap intervals based on ML and SP estimation, respectively, showing a preference for asymptotic confidence intervals based on numerical Hessian evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.