Abstract

An important aspect that strongly impacts the experimental feasibility of quantum circuits is the ratio of gate times and typical error time scales. Algorithms with circuit depths that significantly exceed the error time scales will result in faulty quantum states and error correction is inevitable. We present a comparison of the theoretical minimal gate time, i.e., the quantum speed limit (QSL), for realistic two- and multi-qubit gate implementations in neutral atoms and superconducting qubits. Subsequent to finding the QSLs for individual gates by means of optimal control theory we use them to quantify the circuit QSL of the quantum Fourier transform and the quantum approximate optimization algorithm. In particular, we analyze these quantum algorithms in terms of circuit run times and gate counts both in the standard gate model and the parity mapping. We find that neutral atom and superconducting qubit platforms show comparable weighted circuit QSLs with respect to the system size. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.