Abstract

"Vitamin D is one of the important fat-soluble vitamins for human health. The fact that this vitamin is much lower or higher than needed creates some problems. The World Health Organization (WHO) has recognized fortification as the most effective and safest method to meet the daily requirements of Vitamin D, addressing malnutrition. However, it has numerous difficulties such as loss during processing and storage during food fortification. In recent developments in nanotechnology, microencapsulation technique such as emulsion has great potential to design efficient nanomaterials with desired functionality for fortifying potentiators such as vitamin D. In this study, the effect of emulsifier type and different oil types on the formation and stability of emulsions was determined by measuring the changes in droplet properties (size and charge) under pH, salt and temperature conditions. Emulsion fortified with vitamin D was prepare by using oil phase (linseed, sunflower and MCT oil), emulsifier (pea and lentil protein) with ultrasonication and pickering emulsion method. The mean particle diameter of the pea protein-linseed oil-water emulsions formed using the ultrasonication method was 0.21 µm and the droplet charge was -37.3 mV. In the Pickering emulsion method, the mean particle diameter was 0.17 µm and the droplet charge was -26.75 mV. Also, particle size were 0.24, 22.14, 0.15 µm and particle charge were 24.60, -19.65, -27.80 mV at pH 3, 5 and 7, respectively. In addition, the particle size of pickering emulsion did not dramtically change at 30˚C and 90˚C temperatures and at 100 mM and 500 mM salt concentrations. As a result, pickering emulsion was physically more stable than ultrasound emulsion. This study was supported by Inonu University Scientific Research Projects Unit with The Project number :FYL-2021-2355"

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call