Abstract

This study used two different approaches to model diameter distributions on data from 201 field plots in a boreal conifer forest in south eastern Norway using airborne laser scanning. These two methods were a non-parametric most similar neighbour (MSN) approach and a parametric seemingly unrelated regression (SUR) approach to predict diameter percentiles, and their accuracies were compared by validation with an independent dataset. Based on calculated differences between predicted and observed number of stems on the entire validation dataset, we found that SUR gave unbiased results and that MSN slightly underestimated total number of stems. However, both methods overpredicted the number of stems per hectare in the range of 15.6‐61.5 stems in the smallest diameter classes (between 4 and 12 cm). If the predicted diameter distributions were converted into basal area per hectare (G), both methods gave unbiased results. The average difference for G was 1.9 per cent of the observed value for the MSN approach. The corresponding number for the SUR model was 12.4 per cent. Neither of these differences were statistically significant (P . 0.05). We concluded that the even though both methods overall yielded accurate results, the MSN approach was more reliable in terms of predicting the number of large trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call