Abstract

One-shot methods and recently proposed multi-shot methods for computing stabilizing solutions of continuous-time periodic Riccati differential equations are examined and evaluated on two test problems: (i) a stabilization problem for an artificially constructed time-varying linear system for which the exact solution is known; (ii) a nonlinear stabilization problem for a devil stick juggling model along a periodic trajectory. The numerical comparisons are performed using both general purpose and symplectic integration methods for solving the associated Hamiltonian differential systems. In the multi-shot method a stable subspace is determined using recent algorithms for computing a reordered periodic real Schur form. The results show the increased accuracy achievable by combining multi-shot methods with structure preserving (symplectic) integration techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.