Abstract

Reliable finite element (FE) modeling in structural dynamics is very important for studies related to the safety of structural components used in industry. FE model updating is a tool to produce these reliable models. The method uses an initial FE model and experimental modal data of the structural components to modify physical parameters of the initial FE model, and a number of approaches have been developed to perform this task. This paper presents an overview of model updating and particularly its application for updating of cantilever model. An example of the need for model updating is a cantilever beam, where often the beam is assumed to be rigidly fixed at the clamped end. However, during tests it is often found that the beam has either a small rotation or deflection at the clamped end. If one has to construct the FE model without the knowledge of the experimental modal data, the natural assumption would be to include an ideal, fixed boundary condition, which may not be true. Even with such a simple structure the FE model is not reliable a priori, and based on intuition or engineering judgments it is difficult to estimate the values of the boundary stiffnesses. However, after creating an initial FE model, the model should be updated based on the experimental modal data obtained from modal tests so that the FE model may be used with confidence for further analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call