Abstract

The creation of extensive grasslands is encouraged under the current European Union Common Agricultural Policy (CAP), with the aim of enhancing the provision of ecosystem services, including the reduction of greenhouse gas (GHG) emissions. Nitrous oxide (N2O) is a potent GHG strongly associated with the use of nitrogen (N) fertiliser application in agriculture, but soil conditions (temperature and moisture) are also considered to be important drivers of N2O fluxes. Management strategies to reduce N2O emissions are urgently required to inform the sustainable agricultural practice. N2O fluxes from recently created (<10 years) extensive grassland on former intensive arable land in South East Scotland and on former intensive grassland in South West England were compared with paired sites remaining under long-term intensive management. N2O fluxes, soil temperature (Ts), water filled pore space (WFPS) and available N were measured in a range of grassland soils over three years. N2O emissions were generally <50gNha−1day−1 under all types of management. Maximum emissions were not explained by changes in Ts or WFPS. Lower N2O emissions were not observed in the extensified grasslands compared to long-term intensively managed sites. These findings suggest that the extensification of grasslands may not reduce GHG emissions for at least 10 years following extensification. This enables cost-benefit analyses of agri-environment schemes promoting enhanced ecosystem service provision from recently established species-rich grasslands (SRG) to be made.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.