Abstract

The relationship between structural and functional connectivity in the human brain is a core question in network neuroscience, and a topic of paramount importance to our ability to meaningfully describe and predict functional outcomes. Graph theory has been used to produce measures based on the structural connectivity network that are related to functional connectivity. These measures are commonly based on either the shortest path routing model or the diffusion model, which carry distinct assumptions about how information is transferred through the network. Unlike shortest path routing, which assumes the most efficient path is always known, the diffusion model makes no such assumption, and lets information diffuse in parallel based on the number of connections to other regions. Past research has also developed hybrid measures that use concepts from both models, which have better predicted functional connectivity from structural connectivity than the shortest path length alone. We examined the extent to which each of these models can account for the structure–function relationship of interest using graph theory measures that are exclusively based on each model. This analysis was performed on multiple parcellations of the Human Connectome Project using multiple approaches, which all converged on the same finding. We found that the diffusion model accounts for much more variance in functional connectivity than the shortest path routing model, suggesting that the diffusion model is better suited to describing the structure–function relationship in the human brain at the macroscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.