Abstract
The mechanical and acoustic effects that occur during laser-assisted stapedotomy differ among KTP, CO2, and thulium lasers. Making a fenestration in stapedotomy with a laser minimizes the risk of a floating footplate caused by mechanical forces. Theoretically, the lasers used in stapedotomy could inflict mechanical trauma because of absorption in the perilymph, causing vaporization bubbles. These bubbles can generate a shock wave, when imploding. In an inner ear model, we made a fenestration in a fresh human stapes with KTP, CO2, and thulium laser. During the fenestration, we performed high-speed imaging from different angles to capture mechanical effects. The sounds produced by the fenestration were recorded simultaneously with a hydrophone; these recordings were compared with acoustics produced by a conventional microburr fenestration. KTP laser fenestration showed little mechanical effects, with minimal sound production. With CO2 laser, miniscule bubbles arose in the vestibule; imploding of these bubbles corresponded to the acoustics. Thulium laser fenestration showed large bubbles in the vestibule, with a larger sound production than the other two lasers. Each type of laser generated significantly less noise than the microburr. The microburr maximally reached 95 ± 7 dB(A), compared with 49 ± 8 dB(A) for KTP, 68 ± 4 dB(A) for CO2, and 83 ± 6 dB(A) for thulium. Mechanical and acoustic effects differ among lasers used for stapedotomy. Based on their relatively small effects, KTP and CO2 lasers are preferable to thulium laser.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.