Abstract

This study examines urban fire incidents in Austin, Texas using machine learning (Random Forest) and time series (Autoregressive integrated moving average, ARIMA) methods for predictive modeling. Based on a dataset from the City of Austin Fire Department, it addresses the effectiveness of these models in predicting fire occurrences and the influence of fire types and urban district characteristics on predictions. The findings indicate that ARIMA models generally excel in predicting most fire types, except for auto fires. Additionally, the results highlight the significant differences in model performance across urban districts, indicating an impact of local features on fire incidence prediction. The research offers insights into temporal patterns of specific fire types, which can provide useful input to urban planning and public safety strategies in rapidly developing cities. In addition, the findings also emphasize the need for tailored predictive models, based on local dynamics and the distinct nature of fire incidents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.