Abstract
Soil salinization is a critical and global environmental problem. Effectively mapping and monitoring the spatial distribution of soil salinity is essential. The main aim of this work was to map soil salinity in Shandong Province located on the Yellow River Delta of China using Sentinel-1/2 remote sensing data and digital elevation model (DEM) data, coupled with soil sampling data, and combined with four regression models: support vector regression (SVR), stepwise multi-regression (SMR), partial least squares regression (PLSR) and random forest regression (RFR). For these purposes, 60 soil samples were collected during the field survey conducted from 9 to 14 October 2019, corresponding to the Sentinel-1/2 and DEM data. Then we established a soil salinity and feature dataset based on the sampled data and the features extracted from Sentinel-1/2 and DEM data. This study adopted the feature importance of the RF model to screen all features. The results showed that the CRSI index made the greatest contribution in retrieving soil salinity in this region. In this paper, 18 sampling points were used to validate and compare the performance of the four models. The results reveal that, compared with the other regression models, the PLSR model has the best performance (R2 = 0.66, and RMSE = 1.30). Finally, the PLSR method was used to predict the spatial distribution of soil salinity in the Yellow River Delta. We concluded that the model can be used effectively for the quantitative estimation of soil salinity and provides a useful tool for ecological construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.