Abstract
Abstract Airborne light detection and ranging (LiDAR) and unmanned aerial vehicle structure from motion (UAV-SfM) are two major methods used to produce digital surface models (DSMs) for geomorphological studies. Previous studies have used both types of DSM datasets interchangeably and ignored their differences, whereas others have attempted to locally compare these differences. However, few studies have quantified these differences for different land cover types. Therefore, we simultaneously compared the two DSMs using airborne LiDAR and UAV-SfM for three land cover types (i.e. forest, wasteland, and bare land) in northeast China. Our results showed that the differences between the DSMs were the greatest for forest areas. Further, the average elevation of the UAV-SfM DSM was 0.4 m lower than that of the LiDAR DSM, with a 95th percentile difference of 3.62 m for the forest areas. Additionally, the average elevations of the SfM DSM for wasteland and bare land were 0.16 and 0.43 m lower, respectively, than those of the airborne LiDAR DSM; the 95th percentile differences were 0.67 and 0.64 m, respectively. The differences between the two DSMs were generally minor over areas with sparse vegetation and more significant for areas covered by tall dense trees. The findings of this research can guide the joint use of different types of DSMs in certain applications, such as land management and soil erosion studies. A comparison of the DSM types in complex terrains should be explored in the future.
Highlights
Airborne light detection and ranging (LiDAR) and unmanned aerial vehicle structure from motion (UAVSfM) are two major methods used to produce digital surface models (DSMs) for geomorphological studies
Guisado et al [28] used SfM and terrestrial LiDAR data to investigate a beach dune system and found that SfM performed well with different terrains and enabled faster data collection. These results indicate that the differences in DSMs created using SfM and airborne LiDAR may depend on the land cover type being investigated
We primarily focused on the DSM differences between aerial LiDAR and unmanned aerial vehicle (UAV)-SfM with respect to forests, wasteland, and bare land
Summary
Abstract: Airborne light detection and ranging (LiDAR) and unmanned aerial vehicle structure from motion (UAVSfM) are two major methods used to produce digital surface models (DSMs) for geomorphological studies. Previous studies have used both types of DSM datasets interchangeably and ignored their differences, whereas others have attempted to locally compare these differences. Few studies have quantified these differences for different land cover types. We simultaneously compared the two DSMs using airborne LiDAR and UAV-SfM for three land cover types (i.e. forest, wasteland, and bare land) in northeast China. The average elevation of the UAV-SfM DSM was 0.4 m lower than that of the LiDAR DSM, with a 95th percentile difference of 3.62 m for the forest areas. The average elevations of the SfM DSM for wasteland and bare land were 0.16 and 0.43 m lower, respectively, than those of the airborne LiDAR DSM; the 95th percentile differences were 0.67 and 0.64 m, respectively. A comparison of the DSM types in complex terrains should be explored in the future
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.