Abstract

BackgroundIn recurrent differentiated thyroid cancer patients, detectability in 124I PET is limited for lesions with low radioiodine uptake. We assess the improvements in lesion detectability and image quality between three generations of PET scanners with different detector technologies. The results are used to suggest an optimized protocol.MethodsDatasets of 10 patients with low increasing thyroglobulin or thyroglobulin antibody levels after total thyroidectomy and radioiodine therapies were included. PET data were acquired and reconstructed on a Biograph mCT PET/CT (whole-body, 4-min acquisition time per bed position; OSEM, OSEM-TOF, OSEM-TOF+PSF), a non-TOF Biograph mMR PET/MR (neck region, 4 min and 20 min; OSEM), and a new generation Biograph Vision PET/CT (whole-body, 4 min; OSEM, OSEM-TOF, OSEM-TOF+PSF). The 20-min image on the mMR was used as reference to calculate the detection efficacy in the neck region. Image quality was rated on a 5-point scale.ResultsAll detected lesions were in the neck region. Detection efficacy was 8/9 (Vision OSEM-TOF and OSEM-TOF+PSF), 4/9 (Vision OSEM), 3/9 (mMR OSEM and mCT OSEM-TOF+PSF), and 2/9 (mCT OSEM and OSEM-TOF). Median image quality was 4 (Vision OSEM-TOF and OSEM-TOF+PSF), 3 (Vision OSEM, mCT OSEM-TOF+PSF, and mMR OSEM 20-min), 2 (mCT OSEM-TOF), 1.5 (mCT OSEM), and 1 (mMR OSEM 4 min).ConclusionAt a clinical standard acquisition time of 4 min per bed position, the new generation Biograph Vision using a TOF-based image reconstruction demonstrated the highest detectability and image quality and should, if available, be preferably used for imaging of low-uptake lesions. A prolonged acquisition time for the mostly affected neck region can be useful.

Highlights

  • In recurrent differentiated thyroid cancer patients, detectability in 124I positron emission tomography (PET) is limited for lesions with low radioiodine uptake

  • PET scanners All patients were scanned on two PET/CT systems, a SiPM-based Biograph Vision 600 and a photomultiplier tube (PMT)-based Biograph mCT, and one PET/MR system, an avalanche photodiode (APD)-based Biograph mMR

  • Since its introduction at our center, patients of this rare group [20] were examined on the digital Biograph Vision PET/CT system, resulting in 10 differentiated thyroid cancer (DTC) patients examined on three PET systems until April 2020

Read more

Summary

Introduction

In recurrent differentiated thyroid cancer patients, detectability in 124I PET is limited for lesions with low radioiodine uptake. Elevated thyroglobulin (Tg) levels in differentiated thyroid cancer (DTC) patients after total thyroidectomy and radioiodine therapies are associated with detectable recurrence [1] and poor outcome [2, 3]. The recently introduced “digital” silicon photomultiplier-based (SiPM-based) PET/CT systems show a higher coincidence time resolution and a higher spatial resolution [10] (compared to conventioanl PET/CT systems) These properties were associated with a higher image quality and a higher detectability of small lesions in phantom settings and clinical applications in different studies using 2-deoxy-2-[fluorine-18]-fluoro-D-glucose (18F-FDG) [11,12,13,14] and, most recently, using [gallium-68]gallium-prostate-specific membrane antigen-11 [15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call