Abstract
This paper presents transient stability assessment of a large practical power system using two artificial neural network techniques which are the probabilistic neural network (PNN) and the least squares support vector machine (LS-SVM). The large power system is divided into five smaller areas depending on the coherency of the areas when subjected to disturbances. This is to reduce the number of data sets collected for the respective areas. Transient stability of the power system is first determined based on the generator relative rotor angles obtained from time domain simulation outputs. Simulations were carried out on the test system considering three phase faults at different loading conditions. The data collected from the time domain simulations are then used as inputs to the PNN and LS-SVM. Both networks are used as classifiers to determine whether the power system is stable or unstable. Classification results show that the PNN gives faster and more accurate transient stability assessment compared to the LS-SVM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.