Abstract

Inspired by scaffold filling, a recent approach for genome reconstruction from incomplete data, we consider a variant of the well-known longest common subsequence problem for the comparison of two sequences. The new problem, called Longest Filled Common Subsequence, aims to compare a complete sequence with an incomplete one, i.e. with some missing elements. Longest Filled Common Subsequence (LFCS), given a complete sequence A, an incomplete sequence B, and a multiset M of symbols missing in B, asks for a sequence B⁎ obtained by inserting the symbols of M into B so that B⁎ induces a common subsequence with A of maximum length.We investigate the computational and approximation complexity of the problem and we show that it is NP-hard and APX-hard when A contains at most two occurrences of each symbol, and we give a polynomial time algorithm when the input sequences are over a constant-size alphabet. We give a 35−approximation algorithm for the Longest Filled Common Subsequence problem. Finally, we present a fixed-parameter algorithm for the problem, when it is parameterized by the number of symbols inserted in B that “match” symbols of A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call