Abstract

Many modern sensors used for mapping produce 3D point clouds, which are typically registered together using the iterative closest point (ICP) algorithm. Because ICP has many variants whose performances depend on the environment and the sensor, hundreds of variations have been published. However, no comparison frameworks are available, leading to an arduous selection of an appropriate variant for particular experimental conditions. The first contribution of this paper consists of a protocol that allows for a comparison between ICP variants, taking into account a broad range of inputs. The second contribution is an open-source ICP library, which is fast enough to be usable in multiple real-world applications, while being modular enough to ease comparison of multiple solutions. This paper presents two examples of these field applications. The last contribution is the comparison of two baseline ICP variants using data sets that cover a rich variety of environments. Besides demonstrating the need for improved ICP methods for natural, unstructured and information-deprived environments, these baseline variants also provide a solid basis to which novel solutions could be compared. The combination of our protocol, software, and baseline results demonstrate convincingly how open-source software can push forward the research in mapping and navigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.