Abstract
Detecting the amplification and expression of human epidermal growth factor receptor (HER2) is important for planning trastuzumab treatment for patients with gastric carcinoma. The present study aimed to analyse HER2 amplification and expression in primary gastric adenocarcinoma tumours and metastatic lymph nodes using microarray methods, and to assess the potential contribution of these methods to treatment planning. In total, 60 patients with lymph node metastasis were included in the present study. Microarray blocks were obtained from the tissue blocks of primary tumours and metastatic lymph nodes. HER2 expression and amplification were investigated using immunohistochemical and silver in situ hybridisation (SISH) methods, respectively. Following immunohistochemical evaluation of HER2 in primary tumours, the sensitivity and specificity of the microarray method relative to the single block method were 69 and 100%, respectively. For HER2 detection in microarray block sections from primary tumours, the sensitivity and specificity of the SISH method relative to immunohistochemistry were 56 and 100%, respectively. When using SISH in microarray blocked sections, there was a high degree of concordance (98% concordance rate) between HER2 amplification in the primary tumour and the metastatic lymph node. Furthermore, the sensitivity and specificity of metastatic lymph node results relative to those of the primary tumour were 100 and 98%, respectively. Overall, the single block method was more reliable compared with the microarray method for planning treatment. When microarray blocking was used, a large number of samples must be tested to ensure reliable results. The immunohistochemical method is recommended as the first step as SISH alone increases the risk of false-negative results. Assessing HER2 amplification for treatment planning would be beneficial for primary tumours, as well as metastatic lymph nodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.