Abstract

Many of the challenges associated with utility-scale hydrogen transport and storage relate to its low density, high diffusivity, and the risk of hydrogen embrittlement, motivating consideration to integrating ammonia as an energy carrier. Compared to hydrogen, ammonia is more compatible with pipeline materials and delivers energy at higher density. Ammonia is also a mature industry with a greater extent of established pipeline networks and regulations that may accelerate hydrogen transitions and penetration in energy grids. However, converting hydrogen produced by renewable-driven electrolysis into ammonia (and back to hydrogen, depending on end use) complicates logistics, and associated energy and resource demands may offset the green hydrogen's carbon neutrality. This work outlines core considerations for the use of hydrogen vs. ammonia during transport and storage operations, with an emphasis on green hydrogen or green ammonia pathways coupled to pipeline transport and underground storage. We compare tradeoffs in pipeline infrastructure and operations; subsurface storage options; and project economics. We also evaluate round-trip efficiencies (RTE) for both pathways, which indicate that hydrogen is more attractive from an energy efficiency perspective for hydrogen end-use applications due to the efficiency penalties of initial ammonia synthesis and subsequent cracking, but RTE's for ammonia transport and storage are comparable to hydrogen for direct use or ammonia-to-power systems. The tradeoffs presented in this work would need to be considered on a case-by-case basis, but indicate that selective use of ammonia as an energy-dense hydrogen carrier could support decarbonization goals in industry and hydrogen economies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.