Abstract
The identification of metastable states of a molecule plays an important role in the interpretation of molecular simulation data because the free-energy surface, the relative populations in this landscape, and ultimately also the dynamics of the molecule under study can be described in terms of these states. We compare the results of three different geometric cluster algorithms (neighbor algorithm, K-medoids algorithm, and common-nearest-neighbor algorithm) among each other and to the results of a kinetic cluster algorithm. First, we demonstrate the characteristics of each of the geometric cluster algorithms using five two-dimensional data sets. Second, we analyze the molecular dynamics data of a beta-heptapeptide in methanol--a molecule that exhibits a distinct folded state, a structurally diverse unfolded state, and a fast folding/unfolding equilibrium--using both geometric and kinetic cluster algorithms. We find that geometric clustering strongly depends on the algorithm used and that the density based common-nearest-neighbor algorithm is the most robust of the three geometric cluster algorithms with respect to variations in the input parameters and the distance metric. When comparing the geometric cluster results to the metastable states of the beta-heptapeptide as identified by kinetic clustering, we find that in most cases the folded state is identified correctly but the overlap of geometric clusters with further metastable states is often at best approximate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.